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Example 1. Let Dn be the Weyl algebra then for every s ∈ Z>0 we can define a filtration F k
s Dn :=

{Σα,βcα,βx
α∂β : (α, β) ∈ N×2n}, |α| + s|β| ≤ k} (where |α| = Σjαj). For this filtration grFsDn =

k[x1, . . . , xn, ξ1, . . . , ξn] with deg(xj) = 1 and deg(ξj) = s (exercise).

Notice that the case s = 1 in the example above corresponds to the Bernstein filtration. Also note
how when s ≥ 2 this filtration is not good for our definitions (essentially because it isn’t generated
in degree 1). Although the associated graded is still commutative noetherian. This filtration is
useful because it interpolates between the arithmetic and the geometric filtration. As s tends to
∞ the symbol map looks more like the geometric symbol and less like the arithmetic one.

lemma 1. Let f : N→ Z be a sequence of integers. The following are equivalent:

1. f is eventually polynomial of degree d

2. ∆[f ](n− 1) := f(n)− f(n− 1) is eventually polynomial of degree d− 1

3. f(n) ∼ Σd
j=0aj

(
n
j

)
for some aj ∈ Z

4. The ”poincare series” satisfies P (z) := Σnf(n)zn = R(z) + 1
1−zQ( z

1−z ) where R ∈ Z[z] and
Q ∈ Z[z] with deg(Q) = d.

Proof. The implication (1) ⇐⇒ (2) is a direct computation. We show that together they imply
3. Observe that f(n) = f(n − 1) + ∆f(n − 1) = (I + ∆)[f ](n − 1) = (I + ∆)k[f ](n − k) =
Σk
j=0

(
k
j

)
∆j[f ](n − k). By assumption ∆j[f ](m) = 0 for j > d and large m. Let n > n0 >> 0 and

observe that

f(n) = Σn−n0
j=0

(
n− n0

j

)
∆j[f ](n0) = Σd

j=0

(
n− n0

j

)
∆j[f ](n0)

In other words we have shown that f(n + n0) = Σd
j=0

(
n
j

)
∆j[f ](n0). We are almost done, we only

need to get rid of the pesky n0. To do so we proceed by induction on d.
The base case (d = 0) is trivial so let us assume the statement holds for all polynomials of degree
less than d. Observe now that g(n) = f(n)− f(n+ n0) must be eventually a polynomial of degree
smaller then f (as translation doesn’t change the highest order term). Therefore combining the
induction hypothesis and the statement we showed earlier we are done.
Now we show that (3) =⇒ (4). We can replace the ∼ symbol by an = sign if we add to f some
function g which is eventually 0. The poincare series for this g will be a polynomial. This is where
the R(z) comes from. We are left to prove the statement in the case where R = 0 and in (3)

we have an equality. By linearity its enough to show that Σn

(
n
j

)
zn = tj

(1−z)j+1 which is a direct

computation. Finally (4) =⇒ (1) follows from the same argument traced backwards.
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Recall. If (M,F ) be a good filtered A-module. The function hM(n) = dim(F nM) is eventually
polynomial. Let ed

(
n
d

)
be the ”leading term” of hM then we denote d(M) = d and e(M) = e.

Note that we can interpret these also as d(M) = ordz=1(PM(z))− 1 (order means order of the pole
- not zero) and e(M) = Resz=1[(1− z)d(M)PM(z)]. The point of this is that we know res(P +Q) =
res(P ) + res(Q) and ord(P +Q) ≤ max{ord(P ), ord(Q)}. But in fact in our case (where we start
with f : N→ N) its always true that the coefficient of the lowest power of (1−z) in P is positive so
their can be no cancellations. Thus for P (z), Q(z) which come from poincare series of good filtered
modules we know that ord(P +Q) = max{ord(P ), ord(Q)}.

Exercise 1. Consider an exact sequence of good filtered A-modules (with strict maps)

0→ L→M → N → 0

Then hM(n) = hL(n) + hN(n).

Proof. Follows from additivity of dimension in short exact sequences

Corollary 1. In the situation above d(M) = max{d(L), d(N)} and

e(M) =


e(N) d(L) < d(N)

e(N) + e(L) d(L) = d(N)

e(L) d(N) < d(L)

Proof. Follows from the description of d(M) and e(M) as order of pole and residue respectively.

We give some simple examples of D-modules in dimension 1 so we fix D = D1

Example 2. Polynomials k[x] = D/D∂ form an irreducible module, since we can get to the gen-
erator 1 from any other non-zero polynomial.

Example 3. Let g ∈ k[x] be any polynomial then the ring k[x](g) (in which g is inverted) is also a
D-module (via the usual action of differential operators on functions).

Example 4. The module δ := D/Dx looks like k[∂] as a vector space. This module is also irreducible
(essentially by the same argument as before). It corresponds in some sense (which we will make
precise later in the course perhaps) to the delta function. In this module ∂n can be interpreted as
δ(n)(x) (the nth ”weak” derivative of the delta function).

Example 5. Let Mα = D/D(x∂ − α). Here are some facts about this module

1. Mα
∼= Mβ ⇐⇒ α− β ∈ Z

2. Mα is reducible iff α ∈ Z (so when k = C we have C/Z = C∗ worth of distinct such modules)

3. When α ∈ Z we have a short exact sequence

0→ k[x]→Mα → δ → 0

The following diagram of all weight spaces of x∂ acting on Mα may be useful in convincing oneself
of the above statements.
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